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Results are presented from experimental-theoretical determination ofthe temperature 
dependence of the effective thermal conductivity of a glass-reinforced plastic on the 
basis of solution of the inverse problem. 

Reinforced plastics are in wide use in different thermally loaded structures. The inten- 
sive heating of such materials is accompanied by the occurrence of complex multistage pro- 
cesses resulting from thermal degradation of the binder. These processes in turn lead to 
changes in the structure, chemical composition, and physical properties of the composite 
and its shrinkage. The interrelatedness of the factors just mentioned makes it important to 
study the thermophysical properties of glass-reinforced plastics under nonsteady conditions 
approximating actual service [i]. 

One of the most effective approaches to solving this problem is to conduct experimental- 
theoretical studies based on analysis of empirical data by inverse-problem methods [2]. 

A boundary-value problem for a homogeneous heat conduction equation is usually used as 
a simple mathematical model which describes the heating of materials of complex composition. 
In such a model, thermal degradation of the material is usually considered by introducing 
effective thermophysical characteristics. 

Inverse-problem methods have been used in [3-5], for example, to establish the effective 
thermophysical properties of materials of complex composition. Here, the effect of phenomena 
connected with shrinkage of the materials on the final results is usually ignored. The goal 
of the studies described in the present article was to evaluate the possible effect of 
shrinkage phenomena on the effective thermal conductivity determined from the solution of 
the inverse problem as a function of temperature. 

In the solution of inverse problems, the initial data are the coordinates of the heat sen- 
sors in the test specimen and the results of nonsteady measurement of temperatures at these 
points. Temperatures inside the specimen are usually measured with thermocouples, and the 
coordinates of the latter are usually determined before the test by means of x-ray diffrac- 
tion analysis. 

To evaluate the possible effect of shrinkage of the test material on the results of a 
thermophysical experiment conducted under transient conditions, it is necessary to determine 
the thermophysical characteristics with and without allowance for the sensor displacements 
measured during the test and caused by shrinkage of the material. The effects of shrinkage 
are determined by comparing the results of analyses of data from the same given test by both 
of the methods just mentioned. 

We will assume that heat sensors are installed at a certain number N + 2 of specimen 
points. During the test, in a certain coordinate system we record the change in the position 
of the sensors over time Yi(~), i = i, N + 2 and we measure the temperature 

Texpt(Yi  (z), ~) = f~ (~), i : O, N q- 1. 

S i n c e  i t  i s  n e c e s s a r y  i n  t h e  c o u r s e  o f  t h e  t e s t  t o  d e t e r m i n e  t h e  d i s p l a c e m e n t s  o f  t h e  s e n s o r s  
r e l a t i v e  t o  e a c h  o t h e r ,  t h e n  o n e  o f  t h e m  c a n  b e  r e g a r d e d  a s  t h e  o r i g i n  o f  a new c o o r d i n a t e  
system. Thus, the measurement data can be represented in the form: 
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Texpt(X~(r), %)= fi(%), i = O ,  N q - 1 ,  

Xo (r) ----- O, Xi (r) ~- Yi (~) - -  Yo (~), i --- 1, N, 

XN+, (r) = YN+, (~) - -  Yo (~) = b (~). 

Using the readings of the first and last sensor as first-order boundary conditions and 
designating f0(T) = g1(T) and fN+z(~) = g2(~), we formulate the inverse problem of deter- 
mining the temperature dependence of effective thermal conductivity as follows. We need to 
determine the function X(T) and temperature field T(x, T) that satisfy the boundary-value 
problem: 

0T 0 2 

(X (T) x 6 (0, b (r)), z E (0, rm], (1)  
_ _  OT ~, 

C(T) Or = Ox _ Ox ] 

T (x, O) = To (x), x C [0, b (0)], 

T (0, r) = g .  (r), r E (0, r~t ,  

T (b (r), r) = g~ (r), r E (0, ~.,l, 

as well as the auxiliary conditions: 

T (Xi (r), ~) = fi (~), i = 1, N, �9 E (0, rm], Xi (r) E (0, b (r)), 

X~_l(r) < X, (~), i = I, N, Xo (x) = O, XN+, (r) = b (r),, 

( 2 )  

( 3 )  

( 4 )  

( 5 )  

where C(T); T(x); g1(T); gl(~); fi(~); i = i, N; Xi(T); i = i, N + i are known functions. 

We will use the method in [6] to construct the algorithm for solving inverse problems 
(1-5). We introduce an error functional characterizing the standard deviation of the tem- 
peratures at the sensor locations calculated with model (1-4) from the experimentally-measured 
values. We then attempt to establish the function A'(T) from the condition 

N ~m 

J (g (T)) = ~ .[ [T (Xi (~), ~, Z ( T ) ) "  f~ (r)l 2 dr ~ 6 z, (6)  
i = l  0 

where  6 z i s  an a s s i g n e d  l e v e l  o f  e r r o r  d e t e r m i n e d  f rom a n a l y s i s  o f  t h e  measurement  e r r o r s .  

The i n v e r s e  p robe lm c o n s i s t s  o f  s o l v i n g  a p p r o x i m a t e  e q u a t i o n  (6)  f o r  X(T) w i t h  a l l o w a n c e  
f o r  c o n d i t i o n s  ( 1 - 4 ) .  

We r e p r e s e n t  t h e  sough t  f u n c t i o n  X(T) on t h e  i n t e r v a l  [Tmi n,  Tma x] in  p a r a m e t r i c  form,  
where  Tmi n and Tma x a r e  t h e  minimum and maxJJnum v a l u e s  o f  t e m p e r a t u r e  in  t h e  spec imen  r e g i o n  
be ing  examined .  We u s e  cub i c  B - s p l i n e s  [7] f o r  t h e  p a r a m e t e r i z a t i o n  and we seek  t h e  f u n c t i o n  
X(T) in  t h e  form 

X (T) = ~ )~hBh (T), 
h =  1 

where Xk, k = i, m are parameters; Bk(T), k = i, m are basis functions. As a result,_the 
inverse problem reduces to the search for the vector of the approximation parameters X. 

We seek the vector ~ by minimizing the error functional. The minimization process is 
constructed by using the method of conjugate gradients: 

~ + l = ~ s ~ _ a s ~ s ,  s = 0 ,  1, 2 . . . . .  s*, 

where  

1~ ~ = o, 13 ~ < ( 7 ; y -  - "  ~-' )~-' = (Jx) ; (TL) ~ > RM/II ( l i  IIR-~; 
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s* is the number of the iteration at which Eq. (6) is satisfied. 
chosen from the condition 

rain (J (~s-t-1 _jf_ (~s~S)). 
~s E R + 

The depth of descent = is 

The gradient of the functional being minimized is calculated from the formula 

N~-I "~m XI(D 

i = 1  0 Xi_l('~) 

f OZT ~ I OT ~2 0Bh \ 
(T) dxd'r, k ----I, m, 

where ~i(x, ~) 
problem (1-4): 

is the solution of the boundary-value problem conjugate with the initial 

To determine the depth of descent 

Or Ox z ' 

@~ (x, xm) ~ 0, x E [Xi_l (x), Xi (T)], i = 1, N -}- 1, 

~ (0, x) = O, "~ E [0, %,~), 

%,+~(%v+~('~), ~ ) = 0 ,  ~ [ 0 ,  ~ ) ,  

r (X~ ('~), "~) = r  (X~ ('0, "~), "~ E [0, "~m), i = 1, N, 

(X~ ('~), x) Or (X~ (z), x) = 2 (T (X~ (x), x) - -  f~ (x)), 
Ox Ox 

�9 xE[0, ~ ) ,  i = i ,  N. 

, we u s e  i t s  l i n e a r  e s t i m a t e  

~,. N : ' ( e i  (Xi ('~), 
i = 1  0 i ~ l  0 

where Oi(x, r) is the solution of the following boundary-value problem: 

C 00i = ~. OZa~i + 2 O~. OYi O'ff i + ( OzY O ~  + 
Ox Ox 2 OT Ox Ox ~, Ox z OT 

~ Ox / OT z O'r O T ,  ~=1 Ox ----U-+ \ Ox ] \~=~ dT " 

xE(Xi_x(x) ,  Xi('r)), xE(O, x.~], i =  1, N-I-  11 

0~(x, 0 ) = 0 ,  xElX~_l(0), Xi(0)}, i =  1, N + I ,  

~ (0, x) = O, "~ E (0, %d, 

~N+~(XN+~('O, " r ) = O ,  "rE(O, ~ ] ,  

t~ (Xi (% ~) = 0~+1 (X~ (% ~), �9 E (0, T.,], i = 1, N, 

a ~ i  ooi+l 
ax (x~ (x), .r) = (x~ (% % .r E (0, "rm], i = 1, N. 

Ox 

The  a l g o r i t h m  f o r  s o l v i n g  t h e  i n v e r s e  p r o b e m  w i t h o u t  a l l o w a n c e  f o r  t h e  m o b i l i t y  o f  t h e  
s e n s o r s  h a s  a l r e a d y  b e e n  e x a m i n e d  i n  s u f f i c i e n t  d e t a i l  i n  [ 6 ] .  I n  t h e  n u m e r i c a l  s o l u t i o n  o f  
b o u n d a r y - v a l u e  p r o b l e m s  w i t h  m o v a b l e  b o u n d a r i e s ,  we u s e  a c o o r d i n a t e  t r a n s f o r m a t i o n  w h i c h  
l e a d s  t o  r e c t i f i c a t i o n  o f  t h e  f r o n t s  �9  

To experimentally study the heating and failure of materials exposed to a hot gas flow, 
we developed a stand which provides for nonsteady thermal loading throug h the movement of a 
high-temperature gas generator relative to a stationary holder containing the specimen. The 
plasma stand consists of an electric-arc plasma generator (plasmatron), systems to supply 
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Fig. i. Design of sensor: i) body of sensor; 2) protective 
clamp; 3) calorimeter; 4) tang; 5) plug connection; 6) Chro- 
mel-alumel thermocouple. 

electric power and gas, a cooling system, control panel, instrument complex, control and 
measuring equipment, and the test object - a block containing the specimen. The instrument 
complex makes it possible to obtain frame-by-frame x-ray photographs of the specimen. 

The source of the hot gas flow (air) is a plasmatron with a vortically stabilized arc 
discharge. The working characteristics of the plasmatron: I = 300 A, power W = 89.4 kW, 
discharge of working gas G = 89.4 kW, discharge of working gas G = 4.8 g/sec. 

The instrument complex for photographing the specimen consists of an x-ray source, a 
cassette with a drive, and a system to automatically control the process. The x-ray source 
is an RU-275 unit with ZBDM-100 tube. 

The block for installing the specimen is designed so as to permit clear x-ray photo- 
graphs to be taken due to the location of the casette with film near the specimen. Here, 
six specimen projections can be obtained by rotating it through different angles in the 
range 0-180 ~ relative to its own axis. 

Conducting tests to determine the parameters of the heating and failure of materials 
interacting with a hot gas flow, together with the use of standard specimens, requires the 
development of special sensors to determine the internal temperature field. After analyzing 
existing methods of thermocouple installation in test materials, we tried out the following 
design of sensor to determine temperature profiles. The specimen, made of glass-reinforced 
plastic on a phenol-formaldehyde binder and placed in a metallic holder with a plug connec- 
tion, was a cylinder 32 mm in diameter and 70 mm high. Figure i shows sketches of the sensor. 
The protective clamp is designed to eliminate the effects of transverse heat flow. Cylindri- 
cal holes of different depth 3.5 mm in diameter are drilled in the body of the sensor at 
the rear. Pins with H-shaped chromel-alumel thermocouples 0.i mm in diameter are inserted 
inthe holes. The thermocouples are butt-welded. The pins with attached thermocouples were 
previously coated with a mixture consisting of the phenol-formaldehyde resin and the filler 
cloth. The percentage content of components of the coating is the same as in the base 
material. 

The distance from the end surface to the first thermocouple and between thermocouples is 
2mm. The isothermal section of thermocouples was chosen on the basis of the recommenda- 
tions made in [I] for Chromel-Alumel thermocouples: s ~ 30, where d is the diameter of 
the thermocouple and s is the length of the isothermal section. The depth of installation 
of the thermocouples was refined from the x-ray photographs. We used K-300 adhesive to 
attach a copper calorimeter 3 mm thick to the back side of the sensor. The temperature of 
the calorimeter was checked with an embedded Chromel-Alumel thermocouple. 

To check for the unidimensionality of the heating conditions, we made similar heat sen- 
sors and installed several thermocouples at one depth but different distances from the 
symmetry axis. It was established from a comparison of the thermocouple readings that the 
difference in the readings was no greater than the measurement error. 
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Fig. 2. Displacements X, m.10 -2, and readings of 
heat sensors f, K, as functions of time T, sec: a, b) 
experiment No. i; c, d) experiment No. 2; i) left 
boundary; 2) first heat sensor; 3) second sensor; 4) 
third sensor; 5) right boundary. 

The effect of shrinkage on the thermal conductivity of the material was checked in one- 
sided heating of the specimens. The dependence of the volumetric heat capacity of the 
material (glass-reinforced plastic) on temperature is shown below: 

T (K) - -  273 50 200 400 600 800 900 

C .10 -~ 0,187 0,196 0,192 0,155 0,151 0,154 

The initial temperature of the specimens was a constant 16~ Five thermocouples were 
installed in each specimen. The readings of the two outermost thermocouplesw~re used as 
known first-order boundary conditions, while the readings of the other three thermocouples 
were used as initial data for solving the inverse problem. Below, we analyze the results of 
two specimen tests. Figure 2a and b show the resulting experimental values of relative 
thermocouple location as a function of time in experiment No. I. Also shown is the thermo- 
gram. Figure 2, c and d, show the same for experiment No. 2. 

Before analyzing the experimental data, we conducted numerical tests which revealed that 
inverse problems are numerically solved most expeditiously on a grid n x • n~ = 40 • 40. An 
important factor in analyzing the experimental data is the chosen number of parameters of the 
approximating B-spline. The proper choice was determined through parametric calculations 
performed during the solution of inverse problems, with a subsequent increase in the number 
of parameters of the approximation by unity until satisfaction of error condition (6). It 
was found that for the conditions of our experiments, the unknown relation %(T) is best 
approximated by a B-spline with the "natural" boundary conditions (%"(Tmi n) = %"(Tmax) = 0) 
and four intervals of subdivision of the region in which the sought function is being 
approximated. 

Figure 3 shows results of analysis of the test data with and without allowance for the 
change in thermocouple location during the experiment. In obtaining this data, we analyzed 
the reliability of the results. To do this, we solved the inverse problem for each case 
with different constant initial approximation %0 of the sought function. Results of such an 
analysis are shown in Fig. 4 for the data in experiment No. 2. The independence of the values 
of thermal conductivity on the quantity %0 is confirmation of the high degree of reliability 
of the results. 

It is evident from Fig. 3 that for experiment No. 1 - in which the maximum thermocouple 
displacement was 0.15 m_m - allowing for the mobility of the sensors has almost no effect on 
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Fig. 3. Determination of ~(T): 
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i) experiments Nos. i and 2, res- 
pectively; 3, 4) experiments Nos. 1 and 2 without allowance for the 
mobility of the heat sensors. 

Fig. 4. D_etermination of ~(T): 1-3) different initial approxima- 
tions of I(T); 4-6) corresponding results of solution of the in- 
verse heat-conduction problem. 

the solution of the inverse problem. However, in experiment No. 2 - with a maximum displace- 
ment of 0.4 mm - there is a substantial difference in the estabilshed values of thermal con- 
ductivity. 

The completed studies show that shrinkage of the material and the resulting displacement 
of the heat sensors during the experiment can sometimes significantly affect the determina- 
tion of thermophysical characteristics. Thus, this factor should be taken into account when 
analyzing data from nonsteady thermophysical experiments. 

NOTATION 

T, temperature; ~, time; N, number of heat sensors; f(T), measured values of temperature; 
X, Y, coordinates of the heat sensors; g(~), temperature at the boundary of the specimen; 
C(T), volumetric heat capacity; I(T), effective thermal conductivity; Tm, duration of experi- 
ment; b(T), external boundary of specimen; J, error functional; 6 2 , level of error; ~, conju- 
gate variable; ~, depth of descent; ~, temperature increment. 
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